PHYSICAL REVIEW B 82, 064202 (2010)

Growth and morphology transitions in anisotropic disordered media

Belita Koiller

Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68.528, 21941-972 Rio de Janeiro, RJ, Brazil

Mark O. Robbins

Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA

(Received 3 May 2010; published 19 August 2010)

Depinning transitions of an interface between two magnetic domains are studied within the random-field
Ising model in three dimensions. The fields are uniformly distributed with width 2A in units of the exchange
coupling. The morphology of the interface at the depinning transition varies with A. Self-similar morphologies
characteristic of percolation are observed at large disorder, and self-affine interfaces with roughness exponent
2/3 are formed at intermediate disorder. The multicritical point at the self-similar to self-affine transition is
analyzed through finite-size scaling. The critical disorder A, is substantially higher than previous estimates and
lies near a local maximum in the depinning field H.(A). The scaling exponent for the correlation length near
A, is consistent with results for a Gaussian distribution of random fields, suggesting that the form of the
distribution does not change the universality class. However there is another transition to faceted growth at
small disorder that is not present for Gaussian distributions. The critical field for faceted growth depends on
orientation and boundary conditions. There is a unique “hard” growth direction, (001), for periodic boundary
conditions, whose H,. is larger than that for all other orientations. For the more physical case of free boundary
conditions, growth leads to facets with this hard orientation. This inhibits further growth and increases H,. with
respect to the value for periodic boundary conditions.
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I. INTRODUCTION

Interface motion in disordered media is an important topic
in condensed-matter physics, not only because of its applica-
tions in a variety of natural systems but also because of its
role in motivating the development of concepts and tools for
understanding the interplay between interface morphology,
critical phenomena, and phase transitions.'"”>! Among the
models explored, perhaps the simplest is the random-field
Ising model (RFIM). It is able to capture the competition
between an external force that drives the interface, the local
disorder that aids or hinders advance of each region along the
interface, and the elastic coupling between neighboring re-
gions of the interface. In addition, unlike many other inter-
face models,>'-?? there is no explicit breaking of symmetry
along a growth direction and this leads to a richer variety of
growth morphologies.'’-?!

Two classes of RFIM spin-flip models have been studied.
The first allows spins to flip at any location and was designed
to model Barkhausen noise in magnetic systems.*!4-1¢ The
magnetization curves in this model show an ordinary critical
transition at a critical strength of the disorder. The second,
front-propagation class focuses on motion of an existing in-
terface, and only allows spins adjacent to the interface to
flip.!”-2! This constraint was motivated by applications to
fluid invasion of porous media,?>** where fluid must flow
through a connected path to invade new regions, and is im-
plicit in most models of interface motion.>~!> Recent work
suggests that Barkhausen noise in many systems is described
by motion of existing interfaces and that long-range demag-
netizing fields may play an important role in the
dynamics.'3?

The front propagation model leads to a greater variety of
critical behavior. There are critical transitions between differ-
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ent types of growth morphology as the strength of disorder
varies. In addition, for any degree of disorder, there is critical
behavior at the onset of steady interface growth that is char-
acteristic of self-organized critical systems.'>?® Previous
studies have examined the influence of lattice type, dimen-
sion and the distribution of disorder.'”! The richest phase
diagram is found for bounded distributions of disorder,
where the growth morphology changes from self-similar to
self-affine to faceted with decreasing disorder. Faceted
growth reflects the underlying lattice anisotropy and is sup-
pressed by unbounded (e.g., Gaussian) disorder'”-?” or amor-
phous disorder in the location of spins. It may be important
for many crystalline systems but bounded distributions of
disorder have not been addressed in most previous studies.
One interesting consequence of bounded disorder is that it
can prevent flipping of spins that are not adjacent to the
interface, suppressing the distinction between the classes of
growth model described above. Recent studies that allowed
flipping at all locations found that uniform, bounded distri-
butions gave very different critical behavior than other dis-
tributions of random fields.'®

In this paper, we present a detailed analysis of interface
depinning and morphology in a three-dimensional (3D)
RFIM on a simple cubic lattice.’>?! Growth from an initial
interface is driven by an external field at zero temperature.
The random fields are uniformly distributed between *A.
For each A, we identify the critical field H, that leads to
steady advance of the interface and study the interface mor-
phology at the critical field (Fig. 1).

At large A, growth is completely isotropic and interfaces
have a self-similar structure characteristic of percolation. At
a critical disorder A_, there is a transition to self-affine
growth, where the advancing interface has long-range orien-
tational order. In contrast to other growth models,>” the
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FIG. 1. Phase diagram giving the critical field H, versus disor-
der A as a function of boundary conditions and initial interface
orientation. As the disorder increases, the morphology of the inter-
face changes from faceted (straight broken lines) to self-affine
(squares) to self-similar (triangles). The self-affine to self-similar
transition occurs at A,=3.88 +0.03, and appears to correspond to a
local maximum in H,.. The faceted to self-affine transition is af-
fected by geometry. Error bars on H, are less than 0.1%.

value of H, in the self-affine regime is independent of inter-
face orientation relative to the lattice and insensitive to
boundary conditions. The value of A. is determined from
finite-size scaling studies of the external interface,?” and is
significantly shifted from earlier studies.?® This shift is due to
the presence of regions of unflipped spins behind the moving
interface, which do not arise in models with explicitly bro-
ken symmetry.>!! The critical exponent v describing the
change in correlation length with A appears to be the same as
for unbounded distributions,?’ suggesting that the distribu-
tion of random fields does not change the universality class.
Allowing spins to flip away from the interface does change
the scaling exponents.'4-10

At even smaller disorder, A<<A,, the anisotropy of the
lattice becomes important. The critical field and growth mor-
phology depend on growth direction and boundary condi-
tions. In contrast to models where the growth depends ex-
plicitly on the angle relative to the local interface
orientation,> the critical field does not vary continuously
with orientation. Instead, there is a unique ‘“hard” growth
orientation with a high H, for 1 <A <A,. All other orienta-
tions have the same H, and self-affine scaling exponent when
periodic boundary conditions are applied. The finite bound-
aries of physically realizable systems have a strong effect on
growth at all system sizes. They facilitate growth along the
hard orientation while hindering it in the easiest direction.
The interface tends to form facets along the hard orientation
that remain pinned until the H, for this orientation.

In Sec. II, we describe the growth model. Section III pre-
sents a comprehensive phase diagram and then discusses
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finite-size scaling at the self-similar to self-affine transition,
the transition to faceted growth, and the morphology of
growth in systems with free boundaries. Concluding remarks
are presented in Sec. IV.

II. GROWTH MODEL

As in previous studies,?” we consider a zero-temperature
growth algorithm for a spin system with Hamiltonian,

H=_Esisj_2(77[+H)si~ (1)
(i.j) i

Each Ising spin (s;= = 1) is on a site of a simple cubic lattice
and is ferromagnetically coupled to its six nearest neighbors.
The exchange coupling is taken as the unit of energy, and the
lattice parameter as the unit of length. All spins also interact
with an external magnetic field H and with local random
fields #; that are uniformly distributed: —A < 7, =< A. Disor-
der is thus quantified by the parameter A.

All spins on the lattice are initially antiparallel to the ex-
ternal field, s;=—1, except for those in a bottom layer where
s;=+1. The motion of the interface between +1 and —1 spins
is then followed at fixed external field. Growth proceeds
through single-spin flips, and only spins at the interface and
antiparallel to the external field are allowed to flip (from s;
=-—1 to s;=+1). A spin flip is implemented if and only if it
lowers the total energy, which corresponds to a zero-
temperature simulation. Note that it is never energetically
favorable for spins that are not on the interface to flip for
H<6-A. Thus restricting spin flips to the interface does not
affect growth over the range of A of interest here. The situ-
ation is very different for unbounded disorder, like the
Gaussian random fields considered earlier.!*!3?7

We varied the boundary conditions of the simulation cell
and the initial orientation of the interface relative to the crys-
talline axes to determine their influence on interface growth.
For large A, the results are independent of orientation and
boundaries. In this limit, we present results for cubic simu-
lation cells of side L varying between 48 and 1536. The
initial domain wall is parallel to a (001) cubic crystal plane
and periodic boundary conditions are imposed in this plane.
As A decreases, lattice anisotropy and boundary conditions
become important. We considered periodic systems with ini-
tial interfaces parallel to (10\) planes of varying \. The ini-
tial interface was a rectangle with L spins along the x axis.
We also considered initial interfaces parallel to (111) planes.
Here the periodic cell was a diamond with L spins along each
edge. To model finite samples, we removed the spins around
the edges of the above cells. We discuss “free” boundary
conditions where the distribution of random fields on surface
sites is unchanged, and cases where the random fields on
boundary spins are set to facilitate (77;=+A) or hinder (7,=
—A) growth.

Spins are flipped until all interface spins are stable or the
domain wall reaches the top of the cell. The probability that
the interface will reach the top of the cell grows with increas-
ing H. In the limit of infinite system size, the interface will
reach the top of the cell if and only if the external field is
larger than a critical value H.(A). In finite systems, there is a

064202-2



GROWTH AND MORPHOLOGY TRANSITIONS IN...

range of H near H,(A) where the probability of reaching the
top P increases rapidly from zero to unity. For each system
size L, we studied interfaces at a value of H.(A,L) where P
was about 0.6.?® Finite-size scaling?’ can be used to deter-
mine precise values of H, in the limit L—o but for the
largest system sizes studied here H.(A,L) is always within
0.1% of the limiting value and usually an order of magnitude
closer.

III. RESULTS

Figure 1 summarizes our results for the critical field H,. as
a function of disorder A and geometry. The interface mor-
phology observed at H, is indicated in each case. For large
A, H, is independent of geometry and growth is isotropic at
large scales. Our values in this regime (open symbols) are
consistent with previous work by Ji and Robbins.?’ However,
we find that the transition from self-similar to self-affine
morphologies occurs at A,=3.88+0.03 rather than their
value of 3.41. This transition is described in detail in Sec.
I A.

As A decreases, lattice anisotropy becomes more impor-
tant. At small enough A, there is a faceted regime where
pinned states at H, form facets with specific lattice orienta-
tions. The faceted regime only occurs for A<Ay=2.42
(called A{ in Ref. 20) but the location of the transition to
faceted growth and the value of H,. depend on orientation
and boundary conditions.'®=?! The upper dotted line for (001)
interfaces with periodic boundary conditions is consistent
with Ref. 20. The closed squares and lower dotted line agree
with studies of (111) surfaces with periodic boundary condi-
tions in Ref. 21. Periodic boundary conditions are hard to
realize in experiments and the dashed lines show that H,
shifts dramatically when samples have free boundaries. Sec-
tion III B discusses the role of lattice anisotropy at low dis-
order.

A. Self-similar to self-affine transition

In the high-disorder limit, the Hamiltonian is dominated
by the second term in Eq. (1). Growth follows a path of
“easy-to-flip” sites, i.e., spins with local fields 7; near +A.
The resulting flipped domain is a self-similar fractal in the
same universality class as percolation clusters.”’ As A de-
creases, the exchange term in H becomes more important,
producing correlations in the flipping of neighboring spins.
Interface motion is correlated over a length & that diverges at
a multicritical point?>?*? [A,,H.(A.)] as &é~(A-A)7,
where v is a critical exponent. Below A, the interface has a
well-defined average orientation and obeys self-affine fractal
scaling.” The length £ is related to the correlation length
studied in RFIM models where noninterface spins are al-
lowed to flip. There are other, unrelated correlation lengths
and exponents that describe the diverging size of “ava-
lanches” as H— H, for each value of A.?*? These have been
determined in previous studies of the RFIM (Ref. 20) and
other front propagation models.*¢-12

In previous work,??4? a simple geometrical measure
was used to quantify the range of correlations in the self-
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FIG. 2. (a) Finger width versus disorder A for the indicated
simulation cell sizes. The solid line gives the external finger width
(w,) for the largest cell (L=768). (b) External finger widths versus
disorder. In both panels, the finger widths were calculated in the
plane normal to the nominal growth direction z. Statistical errors are
smaller than the symbol size.

similar regime. An average finger width w was defined as the
mean length of contiguous lines of s=+1 spins along the
(100) or (010) directions. This quantity increased rapidly
with decreasing disorder, and A. and v were
determined®*?*? from a finite-size scaling analysis that as-
sumed w scaled with & Recent studies of larger systems with
Gaussian disorder?’ showed that w does not diverge at A,
and identified more accurate ways of determining A.. We
repeat this analysis for the case of uniform disorder in this
section.

Our results for the average finger width obtained for
simulation cell sizes from L=48 to 768 are indicated by the
data points in Fig. 2(a). Finite-size scaling collapses of w do
not yield good fits for any values of v and A_ because the rise
of w does not sharpen rapidly enough as L increases. More-
over, analysis of the domain of flipped spins shows that it is
not self-similar at length scales larger than w for A=<4.
These observations imply that w does not diverge with & at
A,. The reason?’ is that the interface surrounds and leaves
behind domains of unflipped (s;=—1) spins. Most front
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propagation models do not allow the interface height to be
multivalued®!? but this ability for RFIM interfaces to pass
around strongly pinned spins has a dramatic effect on values
of H, and critical scaling.?” Trapped domains prevent w from
diverging but have no effect on the subsequent motion of the
interface or the scaling behavior of the flipped region. The
range of L in Ref. 20 was not large enough to detect this
difficulty or to determine A_. with an uncertainty of less than
about 0.5. Indeed, the value of A,=3.41 was estimated?’
from the location of a transition in growth mechanisms based
on an analogous transition in two-dimensional (2D)
systems.'® A more accurate determination of A, requires a
different approach.

Following Ref. 27 we define an external finger width w,
that only reflects the structure of the external interface ob-
tained by removing all surrounded unflipped domains. The
solid line in Fig. 2(a) shows w, for L=768. It is close to w
for large disorder but rises much more rapidly as A de-
creases. Figure 2(b) shows w, for the same range of L shown
in (a). From these data, one may anticipate an upper bound
for A, of about 4 since w, for large L coalesce onto a single
curve for A=4.

Finite-size scaling collapses of w, can be used to deter-
mine A, and v. However we have shown?’ that more accu-
rate values are obtained by examining the width of the inter-
face dh along the direction z normal to the initial domain
wall (x-y plane). We define dh as the distance between the
highest and lowest points on the external interface, averaged
over an ensemble of growth simulations for each cell size L.
In the self-similar regime, the external interface is a fractal
that spans the simulation cell and dh is expected to increase
linearly with L. In the self-affine regime, dh ~LH where H is
called the Hurst or roughness exponent. As in earlier work,?
we find H is consistent with 2/3 for all A. Since H<1, dh/L
vanishes in the limit L—oe. Figure 3 shows dh/L vs A for
L=48 to 768. As expected, all curves approach a constant at
large A, and vanish as A decreases. The transition between
limiting behaviors becomes narrower as L increases. The
value of A, can be identified with the point where all curves
cross. As shown in Fig. 1, A, lies near a local maximum in
H_.(A). Tt is interesting to note that A, is also at (or close to)
a local maximum of H, for the case of a Gaussian distribu-
tion of random fields.?’

A more quantitative analysis of the critical behavior was
performed using finite-size scaling. The deviation from A, is
measured by d=(A-A_,)/A. For small §, we assume that the
only relevant lengths are §~ & and the system size L. In
this case, dh/L can only depend on L/§ or, equivalently, on
LY7§. This is confirmed by the data collapse shown in the
inset of Fig. 3. We find acceptable collapses for A,
=3.88*+0.03 and v=2.4* 0.4. We note that the value of v is
in complete agreement with the exponent obtained for a
Gaussian distribution of random fields, indicating that the
distribution of fields does not change the universality class.?’

B. Self-affine to faceted transition

Previous studies of the RFIM (Refs. 17-21) always show
a crossover to a faceted regime at low disorder when the

PHYSICAL REVIEW B 82, 064202 (2010)

3.6

FIG. 3. Average height difference between top and bottom of
external interfaces (dh=(h,—h,)), normalized by system size L, as a
function of disorder. The inset shows a finite-size scaling collapse
of the data points when plotted versus L'?6, with v=2.4, §=(A
—A.)/A and A.=3.88.

distribution of random local fields is bounded. The faceted
regime is removed for unbounded distributions, such as
Gaussian disorder.?’ In 2D, there is a direct transition be-
tween faceted and self-similar growth for bounded
disorder.!” The transition occurs at a unique value of disorder
but the critical field at lower A depends on the boundary
conditions and orientation of the initial interface.!” Boundary
conditions and crystallographic orientation have more dra-
matic effects on the phase diagram for 3D systems shown in
Fig. 1.

For Ag<A<A_, we find self-affine growth for any geom-
etry, and H, is independent of geometry in the limit of infi-
nite system size. Amaral et al.® contrasted growth in this
range of A to front propagation in models with intrinsic an-
isotropy in the equations of motion, such as the Kardar-
Parisi-Zhang (KPZ) model.>?* Intrinsic anisotropy led to a
continuous variation in H,. with the angle of the initial inter-
face relative to the crystallographic axes while no variation
was observed for the 3D RFIM considered here. Earlier work
by Ji and Robbins?® had also concluded that there was no
lattice anisotropy in the self-affine growth for Aj<<A<<A_in
the 3D RFIM.

For A<A,, lattice anisotropy becomes important. As
shown in Fig. 1, we find that H,. depends on the interface
orientation and boundary condition. However, in contrast to
models with intrinsic anisotropy,”!® H,. changes discontinu-
ously with interface orientation. Following Amaral et al.,” we
considered periodic systems with interfaces oriented perpen-
dicular to the (10\) direction for A equal to integers from 1
to 64. Finite-size scaling results gave the same H,(A) (within
0.1%) for all values of \ (filled squares in Fig. 1), although
the approach to the infinite-size limit was slower as A\ in-
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creased. The limit A — o corresponds to the (001) orienta-
tion, and there is a discontinuous jump in H, in this limit.
Simulations for the (001) orientation show H.=4—A which
separates from the value of H, for all other N as A decreases
below Ag. Note that our results for H, at all finite \ are also
consistent with results for the (111) orientation performed for
this paper and presented previously.?! For any direction other
than (001), the interface eventually develops overhangs
where the height is not single valued. These large deviations
from the nominal growth direction restore isotropy in the
depinning field. They become rarer as the direction ap-
proaches (001), and simulations with larger L are needed to
determine H..

The emergence of a singular direction below A, might
signal a new universality class with a different roughness
exponent. To test the scaling, we studied the interface mor-
phology for system sizes up to L=3072 and different orien-
tations. When the growth direction is at a large angle from
(001), scaling shows a roughness exponent of 2/3, with an
uncertainty of less than 0.02. While this exponent is the same
as for A> A, the prefactor of the roughness becomes aniso-
tropic for A <A,

We define the anisotropy in the roughness at a given scale
¢ by the ratio R({) of the root mean squared (rms) roughness
along x and y directions. The rms roughness /,(f) along each
direction i=x, y is obtained by finding the rms height fluc-
tuation along line segments of length € along the desired
direction. For a self-affine surface h;(€) €, where H is the
Hurst or roughness exponent.!? Note that R(€) must be unity
for growth along symmetry directions with threefold or four-
fold symmetry. We find R(€)=1 and H=2/3 for growth
along the (111) direction, which is consistent with studies
using anisotropic boundary conditions.?! As noted above, the
fourfold symmetry direction (001) is a singular direction
with a higher H,. and faceted morphology.

To study the variation in R(€) with angle relative to the
(001) direction, we considered growth from interfaces ori-
ented perpendicular to the (10\) direction. For Ay <A <A,
R(€) is equal to unity within statistical fluctuations of a few
percent for all . Deviations from unity are apparent when A
decreases below A,. For small \, the value of R(€) is nearly
independent of €. Figure 4 shows results for growth along
(102) and (104) at A=1.7. Note that the scaling along both x
and y is consistent with H=2/3. The value of R(€) ap-
proaches a constant at large € (although fluctuations become
significant near the system size). The length at which R(€)
saturates increases with A, as the orientation approaches the
singular (001) direction. This makes it increasingly difficult
to obtain accurate exponents and apparent exponents that are
slightly smaller (by up to 0.1) are observed for L=3072 and
growth along (1 0 64). However, our results support the ex-
istence of a constant H with direction-dependent lattice an-
isotropy for 1 <<A<A,. The sensitivity to growth direction
in this regime is also reflected in the sensitivity to boundary
conditions.

The effect of orientation and boundary conditions can be
illustrated by considering the stability of flat regions with
different crystallographic orientations in the low disorder
limit. For an interface spin s; with n nearest neighbors, f of
which are flipped (+1) and n—f unflipped (-1), the contri-
bution to the total energy [Eq. (1)] is
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FIG. 4. (Color online) (a) Log-log plot of rms height fluctuation
hi(€) over length ¢ along the i=x (solid lines) and y (dashed lines)
directions for L=192, 384, 768, and 1536 in order of increasing
height. The straight dotted line shows power law scaling with H
=2/3. Here A=1.7, and the initial interface is normal to the (102)
direction. (b) Ratio R(£)=h,(€)/h,(€) vs log,o(£) for growth orien-
tations of (102) and (104) with L=3072 (circles), 1536 (asterisks),
768 (squares), 384 (triangles), and 192 (crosses). At large log;o(€),
results for (102) saturate around 1.55 and results for (104) saturate
near 1.25. In general, for growth along (10\), R(€) approaches a
constant at larger € as \ increases.

g;=s{n-2f-H~1,). (2)

The lowest external field that will cause such a spin to flip
(s;=—1—s;,=+1) is H;=n—2f-1,. In the limit of large sys-
tem size, interface spins will sample all values of #;. Since
the distribution is bounded, the first spin will flip at H,,,
=n-2f-A and all spins will flip by H,,,,=n-2f+A.
Consider first a (001) interface with periodic boundary
conditions. Since n=6 and f=1, no spins will flip for H
<H,,;,=4—A. When H is increased enough to flip the first
spin, its neighbors will have f=2. All of these neighbors will
flip for H>H,,,,=2+A and they will cause all their neigh-
bors to flip in turn. This chain reaction implies that H.=4
—A for A<1. The situation is more subtle for larger A, but
H.=4-A up to Ay=2.42. As discussed in Ref. 20, the prob-
lem of flipping each plane can be mapped to bootstrap per-
colation on a two-dimensional square lattice and any flipped
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spins are enough to produce percolation of flipped spins in
the thermodynamic limit.

Introducing free boundary conditions reduces H, (upper
dashed line in Fig. 1) because spins at the boundary of the
simulation cell have fewer neighbors and are easier to flip.
Edge sites at the line where the interface hits the face of the
cubic simulation cell have n=5 and f=1. Corner sites where
the interface hits the edge of the simulation cell have n=4
and f=1. An upper bound for H, is given by 2+A. At this
field all corner spins flip. Their neighboring edge spins also
flip since they have f=2 and H,,=1+A. This sets off a
chain reaction that fills the entire edge. All spins adjacent to
the edge then flip since they have n=6, f=2, and H,,,,,=2
+A. For A>1/2, a new mechanism reduces H,. The first
edge spins flip at H,,;,=3—A, which is lower than the field
required to flip all corners. This sets off a chain reaction
filling all edge sites for H>H,,,,=1+A. The internal spins
next to the corners then have f=3 and will flip since H
>H,,..=A. Their two neighbors then have f=3 and a chain
reaction flips all spins adjacent to the edge. Spins flip line by
line until the whole layer is flipped. This argument breaks
down for A>1 where the chain reaction along edge sites
may be broken by unfavorable random fields. However, we
find H.=3-A to larger A because, as for periodic boundary
conditions, percolation occurs even when some spins do not
flip immediately.

In some physical systems, the distribution of random
fields may be different at the edge of a sample. One limiting
case would be for the boundary to favor flipped spins 7;
=A. This does not change the arguments for the critical field
given above. In the opposite limit 7,=—A, none of the edge
sites can flip before all the corners flip. We find H.=2+A
until the first internal spins flip. Then there is a crossover to
the critical field for periodic boundary conditions H,=4-A
at A=1. This line is not shown in Fig. 1.

Interface spins on (111) surfaces start with n=6 and f
=3. The case of (anti)periodic boundary conditions is con-
sidered in Ref. 21. All interface spins flip for H>H,,,,=A,
giving an upper bound for H,.. For A> 1, H,. drops below this
upper bound. It is no longer necessary for all spins in a layer
to flip immediately because some spins in the subsequent
layer with f=2 can flip for H>H,,;,=2—A. This will cause
underlying spins to have f=4 and they will flip below H
=A. The result is a crossover to self-affine growth at A=1.

In contrast to the (001) case, free boundary conditions
increase H, for (111) interfaces. For the initial interface, sites
at the corners of the interface have n=3 and f=1, and edge
sites have n=4 and f=1. While the internal spins all flip for
H>A, the edge and corner sites require higher fields. For
A<H<H, each successive layer of flipped spins covers a
smaller area and the final pinned configuration contains a set
of facets with (001) orientation. A typical example is shown
for H=1.1 and A=0.25 in Fig. 5.

As for the (001) orientation, an upper bound for H, is
provided by the field required to flip all corner sites H,,,,
=1+A. This allows adjacent edge sites to flip until the entire
plane is filled. For H<2-A, edge sites can flip before all
corner sites flip. This also nucleates a chain reaction and
reduces H, to 2—A for A>0.5. The complete curve for H, is
indicated by the lower dashed line in Fig. 1.
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FIG. 5. Equilibrium pinned interface for a particular realization
of growth with disorder A=0.25 with initial interface along (111)
plane and free boundary conditions (faceted regime). The external
field, H=1.1, is smaller than H.(A) in this case (see Fig. 1). Note
that pinning is essentially due to the large (001) facets, which are
the hardest to advance at low disorder.

C. Effect of boundaries on interface morphology

In terms of physical realization, only free boundary con-
ditions are accessible to experiments since any sample is
finite. Periodic or antiperiodic?' boundary conditions are fre-
quently used in simulations because of convenience and the
belief that they represent the limiting behavior of large sys-
tems most efficiently. The faceted growth regime represents
an interesting case where growth phenomena are sensitive to
boundaries—even in the L — o limit. Faceted growth is very
sensitive to the easiest or most difficult spin to flip, which
may often be on the boundary. Indeed, all results for H.(A)
in the faceted growth fall on straight lines given by

H.(A)=n-2f* A, (3)

where the minus sign arises when the first spin to flip causes
a chain reaction while the plus sign arises when the most
difficult spin to flip can prevent the interface from advanc-
ing.

The impact of the intriguing variety of faceted growth
regimes shown in Fig. 1 on interfaces in finite systems is
illustrated in Fig. 5. This system had an initial (111) interface
at the bottom of a diamond-shaped prism with free boundary
conditions. The prism was cut from the crystal with 60°
angles at the left and right corners and 120° angles at the
front and back. A relatively small simulation cell, with L
=100 spins on each edge, was taken for the qualitative dis-
cussion here.

Figure 5 shows a pinned interface at H=1.1 and A=0.25.
Little additional growth occurs until the field is close to the
critical field of H.(0.25)=1.25 for free boundaries. The
asymmetry between the left and right halves of the system
reflects the crystalline structure, which only has threefold
symmetry about the base of the prism.

Note that the pinned interface has advanced relatively
little near the boundaries. These represent the bottlenecks,
where the interface cannot advance until all spins with n
—2f=1 can flip. Spins in the central region see an environ-
ment close to that of a periodic system and flip when H
> A. This advance is halted near the edge, and a smaller area
is able to advance with each successive layer. The final
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pinned interface consists mainly of facets oriented along the
hard (001) growth directions that hit the boundary near the
initial height. These facets cannot advance until the much
higher critical field of 2.25. Growth would be very different
with periodic boundary conditions. For example, a periodic
repetition of the interface in Fig. 5 would have sharp valleys
at the boundaries between periodic images. The number of
neighboring flipped spins at the bottom of these valleys is
very high, causing them to fill in rapidly and allowing the
entire interface to advance. Qualitatively similar behavior is
found for other boundary shapes and initial interface orien-
tations.

Figures 1 and 5 clearly show the strong effect of boundary
conditions. While (111) is the easy growth direction for pe-
riodic boundary conditions, free boundary conditions cause
the more difficult (100) facets to develop and remain pinned
at the boundary. In contrast, free boundaries can assist fac-
eted growth of interfaces with a (001) orientation, lowering
H_ by as much as a factor of 2. Other effects on real bound-
aries, including roughness and changes in the distribution of
disorder may lead to even more complex behavior.

IV. SUMMARY AND CONCLUSIONS

The results presented above reveal aspects of the rich
phase diagram of interface growth in three-dimensional ran-
dom field systems with bounded disorder. In addition to the
self-similar and isotropic self-affine regimes observed for
Gaussian disorder, there are anisotropic self-affine and fac-
eted regimes at low disorder (Fig. 1). For weak disorder,
growth is strongly affected by boundary conditions as well as
crystalline anisotropy.

The critical field H, needed to initiate steady motion and
the morphology of the pinned interface at H, were studied as
a function of disorder A. The transition between self-similar
interfaces at high disorder and self-affine morphology at in-
termediate disorder was studied using finite-size scaling. The
transition occurs at a critical disorder of A,=3.88 £0.03 and
the correlation diverges with an exponent v=2.4=*0.4. The
value of v is consistent with results for unbounded disorder,
suggesting that bounds on the disorder do not affect the uni-
versality class of this transition. The transition also occurs
near a local maximum in H,. for both bounded and un-
bounded disorder. One may expect that this is a consequence
of the fact that disorder disrupts self-affine growth and thus
increases H,. while disorder enhances percolative growth and
thus lowers H,.. Note that disorder favors self-similar growth
because the percolation probability is less than 1/2. In the
limit of large disorder, the spins that flip have random fields
below the mean of zero, and these fields become more nega-
tive as A increases.

The value of A, is significantly different than an earlier
estimate?® of 3.41. This estimate was based on the scaling of
a finger width w that we have shown (Fig. 2) does not di-
verge at A. because of local patches of unflipped spins that
are left behind the interface. As in earlier studies of un-
bounded disorder,”” a finger width w, derived from the ex-
ternal interface does diverge at A.. Scaling studies of w, give
values of A, and v that are consistent with results from other
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quantities, such as the ratio of interface width to system size
(Fig. 3).

The above value for v is substantially different from the
value v=1.4 from RFIM models where noninterface spins
can flip.!41% A recent study by Liu and Dahmen'¢ found an
even lower value of v in this growth model when the random
fields had the uniform distribution considered here. Their
studies start with all spins initially down and can be viewed
as yet another type of boundary condition for the front
propagation model. The first spin will flip at H=6—A, low-
ering the barrier for its neighbors to flip. In a sufficiently
large system, the resulting clusters will be able to grow
throughout the system if they are above the H.(A) in Fig. 1.
We find 6-A equals H.(A) near A=4.6 which is consistent
with the critical disorder found by Liu and Dahmen. It would
be interesting to explore this connection between the models
in more detail.

For intermediate disorder, Aj<<A<<A_, we find growing
interfaces are self-affine with roughness exponent H=2/3.
As in previous studies,?? the critical field is independent of
the type of boundary conditions and of the crystallographic
orientation of the initial interface. The growing interface is
also isotropic, with the same change in height for different
directions along the interface.

Below Ay=2.42, H. and the interface morphology be-
come strongly dependent on the initial orientation and
boundary conditions. For growth along (001) and periodic
boundary conditions, the interface is a flat facet up to H,
=4-A. All inequivalent growth directions have the same,
lower value of H, and the pinned interface is self-affine.
While the interface has the same roughness exponent as was
found above A, the interface may be anisotropic. As shown
in Fig. 4, height differences grow more rapidly with separa-
tion along one direction than along the perpendicular direc-
tion. This anisotropy vanishes by symmetry along the (111)
direction, which is why it would not have been evident in
studies with this orientation.”!

Continuous changes in H,. with growth direction have
been seen in other models where, unlike the RFIM, the in-
terface height must be single valued.”!° The discontinuous
transition seen here seems more analogous to equilibrium
roughening transitions.’® In thermal roughening transitions,
the total roughness of facets with a given orientation is finite
below the transition temperature 7. Above T, the roughness
diverges with the facet size. By analogy to this transition, we
can say that the disorder at which the (001) surface roughens
is A, while all other orientations are above their roughening
transition for A>1.

The possibility of a roughening transition in interfacial
growth models has been considered analytically. The conclu-
sion is that three-dimensional systems should only have a
roughening transition when there are long-range power-law
interactions.’! However, these studies used models that ex-
plicitly break symmetry by assuming that the interface height
is a single-valued function of position and expressing the
interfacial energy as the squared gradient of height. Other
predictions for such models are also very different than for
the RFIM. For example, there is no self-similar regime in
such models and the interface can be stopped by a single
insurmountable random field.?%%’
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As A decreases below unity, growth along (111) is much
easier than any other direction when there are periodic
boundary conditions. Along this direction H.=A, while H,
=4-A for the (001) direction and H,=2—A for all other
directions. In all cases, the interface is faceted at the onset of
growth. By analogy with the roughening transition, one
might say that all orientations are below the roughening tran-
sition in this regime.

Periodic boundary conditions are not accessible to experi-
ments and the interface morphology is very sensitive to
boundary conditions at low disorder. Free boundary condi-
tions ease growth along the (001) direction but inhibit
growth along the (111) direction. For all but the (001) direc-
tion, H.=2—-A for 0.5<A<1. Arange of H, can be obtained
if the interface enhances growth or inhibits growth. Both
may be relevant in experimental systems.

While we considered spins on a simple cubic lattice, we
expect that the sequence of transitions will be the same for
any three-dimensional lattice. This was generally true in the
case of two-dimensional systems studied earlier, with the ex-
ception of the honeycomb lattice because of its low coordi-
nation number.!”!8 It would be interesting to see if the low
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coordination number of the diamond lattice led to any
changes in behavior at low disorder.

Recent experiments reporting propagation of domain
walls in magnetic nanowires®> show that magnetization re-
versal under an external magnetic field and the domain-wall
velocity are now accessible to control and may be employed
in applications such as magnetoelectronic devices. In spite of
the simplicity of the model (RFIM) discussed in this paper,
we expect that the sample preparation, involving the degree
of disorder and the crystallographic growth orientation, are
key physical aspects to be explored in tailoring properties
(such as switching times) for specific applications.
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